Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38313283

RESUMO

Opioid receptors within the CNS regulate pain sensation and mood and are key targets for drugs of abuse. Within the adult rodent hippocampus (HPC), µ-opioid receptor agonists suppress inhibitory parvalbumin-expressing interneurons (PV-INs), thus disinhibiting the circuit. However, it is uncertain if this disinhibitory motif is conserved in other cortical regions, species, or across development. We observed that PV-IN mediated inhibition is robustly suppressed by opioids in HPC but not neocortex in mice and nonhuman primates, with spontaneous inhibitory tone in resected human tissue also following a consistent dichotomy. This hippocampal disinhibitory motif was established in early development when immature PV-INs and opioids already influence primordial network rhythmogenesis. Acute opioid-mediated modulation was partially occluded with morphine pretreatment, with implications for the effects of opioids on hippocampal network activity during circuit maturation as well as learning and memory. Together, these findings demonstrate that PV-INs exhibit a divergence in opioid sensitivity across brain regions that is remarkably conserved across evolution and highlights the underappreciated role of opioids acting through immature PV-INs in shaping hippocampal development.

2.
Curr Opin Behav Sci ; 41: 22-29, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33796638

RESUMO

The ventral prefrontal cortex (PFC) of primates-a region strongly implicated in decision making-receives highly processed visual sensory inputs from the inferior temporal cortex (ITC) and perirhinal cortex (PRC) and can therefore be considered visual PFC. Usually, the functions of temporal cortex and visual PFC have been discussed in separate literatures. By considering them together, we aim to clarify the ways in which fronto-temporal networks guide decision making. After discussing the ways in which visual PFC interacts with temporal cortex to promote decision making, we offer specific predictions about the selective roles of the ITC- and PRC-based fronto-temporal networks. Finally, we suggest that an increased reliance on visual PFC in anthropoid primates led to our emergence as 'visual' animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...